PyGim: An Efficient Graph Neural Network Library
for Real Processing-In-Memory Architectures

Christina Giannoula, Peiming Yang, lvan Fernandez, Jiacheng Yang,
Sankeerth Durvasula, Yu Xin Li, Mohammad Sadrosadati, Juan Gomez Luna,
Onur Mutlu, Gennady Pekhimenko

m Barcelona VECTOR
.f :. TISIEE)SIEIZ%FO ETH:zurich SAFARI @ oL, mprting @2 < centML -\T INSTITUTE

NVIDIA.

Executive Summary

Problem: The memory-intensive kernels of Graph Neural Networks (GNNs) dominate execution

time (~91%) and are significantly bottlenecked by memory bandwidth in procesor-centric systems
(CPUs/GPUs)

Motivation: PIM provide significantly high memory bandwidth by enabling computation to be
performed close to the application data

PyGim: An efficient and easy-to-use GNN library for real Processing-In-Memory (PIM) systems

Key Ideas & Benefits:

« Cost Effectiveness: Heteregenous GNN kernels are executed in the best-fit hardware

« High Performance: (i) Enabling three levels of parallelism with various strategies in the PIM
side and (ii) adapting best-performing parallelization strategy to the graph’s unique
characteristics

« High Programming Ease: (i) Providing a handy Python API and (ii) automatically tuning the best-
fit parallelization strategy without programmer intervention

Key Results: PyGim improves (i) performance and energy efficiency by 3.7x and 2.3x over state-
of-the-art schemes, and (ii) core utilization on PIM system by 11.6x over PyTorch on GPUs

github.com/CMU-SAFARI/PyGim

https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim

Talk Outline

Background & Motivation

{PyGi m Design }

{Evaluation }

GNNs Are Widely Used in Real-World Applications

* GNNs are state-of-the-art ML models for analyzing graph-structure data
* GNN has a lot of applications:

Execution Steps of GNN Layers

* GNNs comprise a few layers (e.g., 3-5 layers)
« Each GNN layer has two execution steps:

gy (1),
G

Adjacency (Sparse) Matrix Input Feature

Execution Steps of GNN Layers

* GNNs comprise a few layers (e.g., 3-5 layers)
« Each GNN layer has two execution steps:

Oy

@, oy
oy (1)

®

Adjacency (Sparse) Matrix Input Feature

Execution Steps of GNN Layers

* GNNs comprise a few layers (e.g., 3-5 layers)
« Each GNN layer has two execution steps:

P Oy,

'n - o e..'»'@

oy @, @ ('b"' P BORGE:
® @ 6 ® O ©
x = (1] o = (1]

Adjacency (Sparse) Matrix Input Feature Aggregation Result Neural Network (NN) Output Feature

Execution Steps of GNN Layers

* GNNs comprise a few layers (e.g., 3-5 layers)
« Each GNN layer has two execution steps:

oy
3 4 I
Gy (). o Ty
6 (5 (&

Adjacency (Sparse) Matrix Input Feature Aggregation Result Neural Network (NN) Output Feature

Aggregation '

Combine features by NN. Typically comprises
compute-intensive kernels (e.g., GEMMs)

Aggregate neighbor’s feature, corresponds to
Sparse Matrix Matrix Multiplication (SpMM)

GNN Aggregation Is Memory-Bandwidth-Bound In GPUs

Using a RTX 3090 GPU with ~900 GB/s bandwidth, we find that GNN Aggregation
e takes ~91% of the inference time
e achieves less than 2% core utilization

Roofline Analysis

RTX3090

FP32: 35580.0 GFLOP/s

B Aggregation
Combination

0
190 102 10° 101 102 10° 10
Arithmetic Intensity [FLOPs/Byte]

Performance [GFLOP/s]

PIM Alleviates The Data Movement Bottleneck

« Near-bank PIM: each PIM core is tightly coupled with one (or a few) DRAM banks
* Near-bank PIM cores have significantly higsher memory bandwidth than Host cores

A Near-Bank PIM System

-

-

Host Processor
(e.g., CPU/GPU)

Host Cores

-
—

(—

)

Standard Memory Modules

Talk Outline

{Background & Motivation }

PyGim Design

{Evaluation }

PyGim Overview

* An efficient and easy-to-use GNN library for real PIM systems

* PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Run heterogeneous kernels in the best-fit hardware

1. Cooperative Acceleration (CoA)

Heterogeneous kernels are running in the best-fit underlying hardware
« Combination runs on Host cores
» Aggregation runs on PIM cores

A Near-Bank PIM System

4 j \
a A
Host Procq GNN ~
(e.g., CPU : . Standard Memory Modules
Combination
BUS \ GNN
- Aggregation
r'(—(r PIM-Engeted Memory ‘\
4 N 1| | [PIM Core || PIM Core | PIM Core |[PIM Core |
: ; :
Bus LU Bank)| Bank J{ Bank J{ Bank)]
N J

\ / . 7
R Z \ ,

Challenge 1: Expensive Data Transfer Costs

* Alleviate the overheads of passing the output data of the one step as input data
to the next step

A Near-Bank PIM System

-

e

Bus

(—
(—

Vs

Standard Memory Modules

-

-

PIM-En

GNN

Aggregation

gfed Memory

: PIM Core

: PIM Core

: PIM Core:

\ PIM‘oreJ

BRA

[DRAM |(

M| [=BRAM
. Bank J{

Bank |

Bank

DRAM
Bank

J

J

J

J

10

PyGim Overview

* An efficient and easy-to-use GNN library for real PIM systems

* PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Challenge

Expensive Data Transfer Costs

11

PyGim Overview

* An efficient and easy-to-use GNN library for real PIM systems

* PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Challenge

so\“‘.\o‘\

Expensive Data Transfer Costs

11

2. Parallelism Fusion (PaF)

« PaF (i) strives a balance between computation and data transfer costs and
(i1) covers various graphs with diverse characteristics

* PaF enables 3 levels of parallelism: | Reduces data transfer costs |

1. Across PIM Clusters: Edge- and Feature-level
2. Within PIM Cluster: Vertex- or Edge-level parallelism
3. Within PIM Core: Vertex- or Edge-level parallelism
Reduce computation costs

arallelism

Cluster 1 PIM-Enabled Memory Cluster 2 A

\7
PIM PIM J. :{
Core : !

PIM
Core

|
|
I
|
v \ 4 |
|
|
|
|

12

Within PIM Core

PIM Core

33999

Threads

|
\ I
\
\ |

\ |

|

Bank

Bank [

Cluster 3 PIM-Enabled Memory\\ Cluster 4 A
o o e e o \ o e e ——— -
:[PIM J [PIM Ju |[PIM J [PIM]|
| Core Core : I Core Core
] P '
. 1 |
: DRAM DRAM DRAM
|
\

DRAM :I
Bank [I
|

Across PIM Clusters s

)

J

An Aggregation Example

« E.g., a graph with 8 vertices and 14 edges
« SPMM is used for aggregation

Adjacency (Sparse) Matrix Input Feature Matrix Aggregation Results

13

2.1 PaF Parallelism Across PIM Clusters

« PaF (i) strives a balance between computation and data transfer costs and
(i1) covers various graphs with diverse characteristics

» PaF enables 3 levels of parallelism:

[1.

Across PIM Clusters: Edge- and Feature-level parallelism]

Cluster 1 PIM-Enabled Memory
————— [f
PIM

core |

1% =11
A

b

PIM

Core Core

Cluster 2 A

[

PIM J|

14

33999

[PIM Core

|

!

Threads
Cluster 3 PIM-Enabled Memory . Cluster 4
————— - om Emm — e *
PIM J [PIM J { PIM J [PIM
Core Core Core Core

I v
[Bank} ‘ Bank \

FENE

|
3

Il Across PIM Clusters pem

)

J

Across PIM Clusters: Edge- & Feature-Level Parallelism
« E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions

Edge-level partition

¥
Clusters
Clusters | C 119
iz e 9§
Clusters
Pl i

Adjacency (Sparse) Matrix Input Feature Matrix

Across PIM Clusters: Edge- & Feature-Level Parallelism
« E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions

@u:,;,_.,

Clusters 1,2 Clusters 3,4
Edge-level partition Feature-level partition
Il :/

Clusters | C

Adjacency (Sparse) Matrix Input Feat.ure Matrix

\ ust8rs

£

I'S

Across PIM Clusters: Edge- & Feature-Level Parallelism
« E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Edge-level partition Feature-level partition Merged by Host cores
¥ I'd /\
o f 7 N
- - V. ‘
Clusters | C \ E R //” N\ <
1.2 x —— @ @ O O
’ 4 | | h e N
- T T
Adjacency (Sparse) Matrix Input Feature Matrix Partial Results for Output

15

2.2 PaF Parallelism Within PIM Cluster

« PaF (i) strives a balance between computation and data transfer costs and
(i1) covers various graphs with diverse characteristics

« PaF enables 3 levels of parallelism:

[2. Within PIM Cluster: Vertex- or Edge-level parallelism | P%"%Sc%e
Threads .
~ _ N O _)
Cluster 1 PIM-Enabled Memory Cluster 2 Cluster 3 PIM-Enabled Memory * Cluster ‘ﬂ-
----------------------------- ittt ettt {—---—--——-—-—-—-—-~|f _-— - —\ — e =
| ;|{ PIM J [PIM]|
: : Core Core
. :| [
: El [
: il }l
o e)16\

Within a PIM Cluster: Vertex- or Edge-Level Parallelism

« E.g., balancing vertices or balancing edges across PIM cores within the cluster

Balance Vertices Across PIM Cores Balance Edges Across PIM Cores
Core 1
Core1 | Pl P e e - N I -
Core 2
Core 2
Adjacency (Sparse) Matrix Adjacency (Sparse) Matrix
Cluster 1 has 2 PIM Cores
f 3, PIM-Enabled Memory Cluster 2 |
(C=o—————-—————-—- R R RS
PIM Core | [PIM Core s :
a I
! | :
|

-— e e . .
s N

DRAM Bank | | DRAM Bank |h
S A) 17

2.3 PaF Parallelism Within PIM Core

« PaF (i) strives a balance between computation and data transfer costs and
(i1) covers various graphs with diverse characteristics

« PaF enables 3 levels of parallelism:

Within PIM Core

PIM Core
[3. _Within PIM Core: Vertex- or Edge-level parallelism] 55555
Threads
4 Cluster 1 PIM-Enabled Memory Cluster 2 N Cluster 3 PIM-Enabled Memory . Cluster 4
-- i L P L R
""""""""""""""""""""""""""""" 18

Within a PIM Core: Vertex- or Edge-Level Parallelism

« E.g., balancing vertices or balancing edges across threads within a PIM core

Balance Vertices Across Threads Balance Edges Across Threads
Thread 1 - - -
_Tire_acl 1_ L] i _|_ _Thread 2
_Trlre_ad_z_ L A0, I R A Thread 3 _E- .
thred3 —4—77®89@ Y ¢¢1¢4+4114,° - =—===—-=- b
Thread 4 B = - Thread 4 “H []
Adjacency (Sparse) Matrix Adjacency (Sparse) Matrix
PIM Core supports P ore Synchronization is implement
4 threads ??Ssds with lock-free or fine-grained locking schemes
Threads

19

Challenge 2: Programmability in Real-World Graphs

» PaF supports a wide variety of parallelization strategies:
- Typically there is no one-size-fits-all solution

 Challenge = manually tuning the parallelization strategy poses significant

burdens for developers
« Unique graph’s characteristics need different tuning

regular graph power-law graph diagonal graph

Real-world graphs exhibit diverse characteristics

20

PyGim Overview

* An efficient and easy-to-use GNN library for real PIM systems

* PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

R \
/5@//s o (
S

Expensive Data Transfer Costs

Programmability in
Real-World Graphs

21

PyGim Overview

* An efficient and easy-to-use GNN library for real PIM systems

* PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

R \
/5@//s o (
S

Expensive Data Transfer Costs

Programmability in

Real-World Graphs 4

21

3. Lightweight Tuning

« PyGim Tuner predicts the best-performing PaF strategy without manual
programmer intervention

« Hardware profiler generate a group of performance measurements

» Performance predictor predict the execution of potential PaF strategy
» PaF selector apply the best-performing PaF strategy

PIM-Enabled Memory

- PIMCore ||

PIM Core |

\ 4

i

DRAM Bank

Real PIM System

Real-world Graph

|-

DRAM Bank

~

4 PyGim Tuner
Hardware
[Profiler] [PaF Generator]

-~

"

Performance Predictor

~

J

_

[PaF Selector]

)

Best-performing
PaF Strategy

22

PyGim Overview

* An efficient and easy-to-use GNN library for real PIM systems

* PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

21

4. Handy Programming Interface

OWoONOUVID WDN R

PyGim integrates a handy Python API (currently integrated with PyTorch)

import .. pygim as gyn
GCNConv (torch.nn.Module):
(, hidden size):
.linear = torch.nn.Linear(feature_size, features size)

(, graph pim, in_dense):
Execute memory-intensive kernel in real PIM devices
dense parts = col split(in dense)

out dense = gyn.pim run aggr(graph pim, dense parts)

out = .linear(out_dense)
out

gyn.pim_init devices(num_pim_devices)
data = load dataset()
Tune the PaF strategy

raph n.tune(data.graph, feature size, device info
graph pim = gyn.load graph pim(graph parts

Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature size),

GCNConv(feature_size),
GCNConv(feature_size),
GCNConv(feature_size),

Linear(feature_size, out_channels)])
model.forward(graph pim, data.features)

23

Deploy Your GNNs Effortlessly with PyGim and Enjoy the PIM Benefits!

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1|import - ___pygim as gyn I

Execute memory-intensive kernel in real PIM devices

out dense = gyn.pim run aggr(graph pim, dense parts)

Computation is performed

inside real PIM devices!

Tune the PaF strategy

leraph pim= gyn.tune(data.graph, feature size, devi. 2fo)

~

Create GNN model

GCNConv(feature_size),
GCNConv(feature_size),
GCNConv(feature_size),
Linear(feature size, out channels)])

N

model=torch.nn.Sequential([Linear(in_channels,feature size),

Loading kernel from: /home/upmem@@l3/
m_mul_coo_dpu

1880 DPUs are allocated in 16 ranks
Allocated 16 TASKLET(s) per DPU

BLNC BLNC_NNZ

SYNC True

BLNC_TSKLT = BLNC_TSKLT_NNZ
LOCK = LOCKFREEVY2

MERGE = BLOCK
PIM_SEQREAD_CACHE_SIZE=32
val_dt = INT32

spmm_coo_to_device_group

prepare_pim finished

Iteration - ime: 7127.993@
Iteration . ime: 7191. §
Iteration |

Iteration @883:

Iteration 00G4:

Iteration @805:

2—7 y
T 2 e 1
wod e [o 4

small cores

Memory UPMEM PIM

Talk Outline

{Background & Motivation J

{PyGi m Design }

24

Evaluation Methodology

« UPMEM PIM server: 16 PIM DIMMs with 7992 PIM Cores (24 threads per core) in total
 GNN models: GCN, GIN, SAGE
« Datasets: OGBN-Proteins, Reddit, AmazonProducts
« Comparison points:
* PyTorch running on host CPU

 SparseP [Sigmetrics’22] (2x) running SpMM as multiple SpMV kernels on PIM cores
« GraNDe [IEEE Trans. Comput.’23]: optimizes GNN aggregation on near-rank PIM systems

([~ N

Host CPU Bus 128 GB Main Memory
(2-socket Intel Xeon)

~1 124 GB PIM-Enabled Memory)
Bus | PIM Core || PIM Core || PIM Core || PIM Core |
¥ ['Y

3
[Shared Cache L L DRﬁll\(A][%aRﬁﬁA][[l)iaRﬁll\(A][%aRﬁf(A }])
X .

UPMEM PIM System 25

N

L

Performance Evaluation in GNN Inference
INT32

26

Performance Evaluation in GNN Inference
INT32

OPyTorch (CPU) O SparseP1 @ SparseP2 B GraNDe B PyGim_CSR m PyGim_CQOO
4

N W
- U1 N U1 W Ul

—

ormalized Speedup

a1 B0 Bl B0 BN DD Sl S B
PyGim significantly outperforms PyTorch (CPU)

and prior PIM-based schemes by 3.1x and 4.4x respectively

26

Energy Efficiency Evaluation in GNN Inference
INT 32
OPyTorch (CPU) O SparseP1 @ SparseP2 ® GraNDe B PyGim_CSR mPyGim_COO
14000 |

12000 |
10000 |
8000 |
6000 !
|
1

4000 ||]]

gy Consumption (J)

PyGim improves energy efficiency by 2.7x and 3.3x compared to

PyTorch (CPU) and prior PIM-based schemes respectively

27

Characteristics of CPU, PIM and GPU Systems

System INT32 Peak FP32 Peak Total Technology Node
Performance Performance Bandwidth

CPU Xeon 4215 0.64 TOPS 1.28 TFLOPS 23.1 GB/s 14nm
UPMEM PIM 0.12 TOPS 0.025 TFLOPS 1390 GB/s at least 20nm
GPU GTX 1080 Ti 13.25 TOPS 13.25 TFLOPS 359.9 GB/s 16nm
GPU RTX 2080 Ti 16.94 TOPS 16.94 TFLOPS 558.1 GB/s 12nm
GPU RTX 3090 17.79 TOPS 35.58 TFLOPS 1936.2 GB/s, 8nm

Across last GPU generations:
 memory bandwidth has tripled (~3x)
« (last two generations) compute throughput has been doubled (-2x)

Core Utilization in GNN Aggregation

Dataset & data type/ Reddit Reddit
Software library INT32 FP32

Intel MKL (CPU Intel Xeon 4215) 0.63% 0.22%
CUDA (GPU GTX 1080 Ti) 0.62% 0.62%
CUDA (GPU RTX 2080 Ti) 0.68% 0.67%
CUDA (GPU RTX 3090) 1.56% 0.78%
PyGim (UPMEM PIM) 13.86% 9.13%

Core utilization in GNN aggregation remains similarly low across GPU generations

PyGim running on a real PIM system achieves
significantly higher core utilization(11.6x on average) than the PyTorch on GPUs

28

More in the Paper

PyGim: An Efficient Graph Neural Network Library for Real

AnalySiS Within a PIM core Processing-In-Memory Architectures

CHRISTINA GIANNOULA, University of Toronto, Canada, ETH Ziirich, Switzerland, Vector Institute,
Canada, and CentML, Canada

L] L] L]
PEIMING YANG, Universi ,
A n a lyS.I S W.I t h] n a P I M C l u S t e r IVAN FERNAND;;jv]:iilct::rl;i:gfpitioi;iiig Center, Spain, Universitat Politécnica de Catalunya,

Spain, and ETH Ziirich, Switzerland
JIACHENG YANG, University of Toronto, Canada and Vector Institute, Canada
. SANKEERTH DURVASULA, University of Toronto, Canada and Vector Institute, Canada
Ana [ys] s across PIM clusters YU XIN L Universiy of oo, Cans
MOHAMMAD SADROSADATI, ETH Zitrich, Switzerland
JUAN GOMEZ LUNA, NVIDIA, Switzerland
ONUR MUTLU, ETH Ziirich, Switzerland

PyG-i m t u n -i n g e ff-i C-i e n Cy GENNADY PEKHIMENKO, University of Toronto, Canada, Vector Institute, Canada, and CentML,
Canada

Graph Neural Networks (GNNs) are emerging models to analyze graph-structure data. The GNN execution
involves both compute-intensive and memory-intensive kernels. The memory-intensive kernels dominate
ol o N execution time, because they are significantly bottlenecked by data movement between memory and processors.

Processing-In-Memory (PIM) systems can alleviate this data movement bottleneck by placing simple processors
SC a l a b.l l] ty a n a lyS] S near or inside memory arrays. To this end, we investigate the potential of PIM systems to alleviate the data

movement bottleneck in GNNs, and introduce PyGim, an efficient and easy-to-use GNN library for real PIM

systems. We propose intelligent parallelization techniques for memory-intensive kernels of GNNs tailored
for real PIM systems, and develop an easy-to-use Python API for them. PyGim employs a cooperative GNN
hd by execution, in which the compute- and memory-intensive kernels are executed in processor-centric and

A n a lyS] S O n d] ffe re n t d at a ty p eS memory-centric computing systems, respectively, to fully exploit the hardware capabilities. PyGim integrates
a lightweight tuner that configures the parallelization strategy of the memory-intensive kernel of GNNs to

provide high system performance, while also enabling high programming ease. We extensively evaluate PyGim
on a real-world PIM system that has 16 PIM DIMMs with 1992 PIM cores connected to a Host CPU. In GNN
. . . inference, we demonstrate that it outperforms prior state-of-the-art PIM works by on average 4.38x (up to
A n a l S'I S O n d 'I ffe re n t C O m reS S'I O n fo rm at S 7.20%), and the state-of-the-art PyTorch implementation running on Host (on Intel Xeon CPU) by on average
y p 3.04X (up to 3.44x). PyGim improves energy efficiency by 2.86x (up to 3.68x) and 1.55X (up to 1.75x) over prior

PIM and PyTorch Host schemes, respectively. In memory-intensive kernel of GNNs, PyGim provides 11.6x

higher resource utilization in PIM system than that of PyTorch library (optimized CUDA implementation)

in GPU systems. Our work provides useful recommendations for software, system and hardware designers.
PyGim is publicly and freely available at https://github.com/CMU-SAFARI/PyGim to facilitate the widespread

Performance evaluation in GNN training

Key Words: machine learning, graph neural networks, sparse matrix-matrix multiplication, library, mul-
ticore, processing-in-memory, near-data processing, memory systems, data movement bottleneck, DRAM,
benchmarking, real-system characterization, workload characterization

Recommendations

https://arxiv.org/pdf/2402.16731

https://arxiv.org/pdf/2402.16731

Conclusion

We present PyGim, a handy ML library that significantly improves performance,
energy efficiency and cost effectiveness in GNNs through real PIM devices

Key ldeas & Benefits:

» balances computation and data transfer costs via configurable parallelization
strategies for diverse real-world graphs

« automatically tunes the best-fit strategy without programmer intervention

Key Results:

« performance and energy efficiency by 3.7x and 2.3x over SOTA schemes
* core utilization on PIM system by 11.6x over PyTorch on GPUs

Github

30

PyGim: An Efficient Graph Neural Network Library
for Real Processing-In-Memory Architectures

Christina Giannoula, Peiming Yang, lvan Fernandez, Jiacheng Yang,
Sankeerth Durvasula, Yu Xin Li, Mohammad Sadrosadati, Juan Gomez Luna,
Onur Mutlu, Gennady Pekhimenko

m Barcelona VECTOR
.f :. TISIEE)SIEIZ%FO ETH:zurich SAFARI @ oL, mprting @2 < centML -\T INSTITUTE

NVIDIA.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

