
PyGim: An Efficient Graph Neural Network Library
for Real Processing-In-Memory Architectures

Christina Giannoula, Peiming Yang, Ivan Fernandez, Jiacheng Yang,

Sankeerth Durvasula, Yu Xin Li, Mohammad Sadrosadati, Juan Gomez Luna,

Onur Mutlu, Gennady Pekhimenko

Key Results: PyGim improves (i) performance and energy efficiency by 3.7× and 2.3× over state-

of-the-art schemes, and (ii) core utilization on PIM system by 11.6× over PyTorch on GPUs

Executive Summary

1

Problem: The memory-intensive kernels of Graph Neural Networks (GNNs) dominate execution

time (~91%) and are significantly bottlenecked by memory bandwidth in procesor-centric systems

(CPUs/GPUs)

PyGim: An efficient and easy-to-use GNN library for real Processing-In-Memory (PIM) systems

Key Ideas & Benefits:

• Cost Effectiveness: Heteregenous GNN kernels are executed in the best-fit hardware

• High Performance: (i) Enabling three levels of parallelism with various strategies in the PIM

side and (ii) adapting best-performing parallelization strategy to the graph’s unique

characteristics

• High Programming Ease: (i) Providing a handy Python API and (ii) automatically tuning the best-

fit parallelization strategy without programmer intervention

github.com/CMU-SAFARI/PyGim

Motivation: PIM provide significantly high memory bandwidth by enabling computation to be

performed close to the application data

https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim

Talk Outline

2

Background & Motivation

PyGim Design

Evaluation

GNNs Are Widely Used in Real-World Applications

3

• GNNs are state-of-the-art ML models for analyzing graph-structure data

• GNN has a lot of applications:

Drug Discovery

Recommendation Systems

Fraud Detection

Execution Steps of GNN Layers

4

• GNNs comprise a few layers (e.g., 3-5 layers)

• Each GNN layer has two execution steps:

1
2

5

4

6

Adjacency (Sparse) Matrix Input Feature

Input Feature

Execution Steps of GNN Layers

4

• GNNs comprise a few layers (e.g., 3-5 layers)

• Each GNN layer has two execution steps:

Input Feature

1
2

5

4

6

Adjacency (Sparse) Matrix

1
2

5

4

6

Execution Steps of GNN Layers

4

• GNNs comprise a few layers (e.g., 3-5 layers)

• Each GNN layer has two execution steps:

1
2

5

4

6

Adjacency (Sparse) Matrix Input Feature

1
2

5

4

6

1
2

5

4

6

Output FeatureAggregation Result Neural Network (NN)

Execution Steps of GNN Layers

4

• GNNs comprise a few layers (e.g., 3-5 layers)

• Each GNN layer has two execution steps:

Aggregation Combination

Aggregate neighbor’s feature, corresponds to

Sparse Matrix Matrix Multiplication (SpMM)

Combine features by NN. Typically comprises

compute-intensive kernels (e.g., GEMMs)

1
2

5

4

6

Adjacency (Sparse) Matrix Input Feature Neural Network (NN)

1
2

5

4

6

1
2

5

4

6

Output FeatureAggregation Result

GNN Aggregation Is Memory-Bandwidth-Bound In GPUs

5

Using a RTX 3090 GPU with ~900 GB/s bandwidth, we find that GNN Aggregation

• takes ~91% of the inference time

• achieves less than 2% core utilization

Roofline Analysis

Bandwidth-Bound

PIM Alleviates The Data Movement Bottleneck

6

• Near-bank PIM: each PIM core is tightly coupled with one (or a few) DRAM banks

• Near-bank PIM cores have significantly higher memory bandwidth than Host cores

A Near-Bank PIM System

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Host Processor

(e.g., CPU/GPU)

Host Cores

Shared Cache

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

Standard Memory Modules

Bus

PIM Provides A Promising Solution for GNN Aggregation

Talk Outline

7

Background & Motivation

PyGim Design

Evaluation

PyGim Overview

8

• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Run heterogeneous kernels in the best-fit hardware

Strives a balance between computation and data transfer

Automatically tunes the best-performing PaF strategy

Integrates a handy Python (PyTorch) API

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Strives a balance between computation and data transfer

Automatically tunes the best-performing PaF strategy

Integrates a handy Python (PyTorch) API

1. Cooperative Acceleration (CoA)

9

Heterogeneous kernels are running in the best-fit underlying hardware

• Combination runs on Host cores

• Aggregation runs on PIM cores

A Near-Bank PIM System

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Host Processor

(e.g., CPU/GPU)

Host Cores

Shared Cache

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

Standard Memory Modules

Bus GNN

Aggregation

GNN

Combination

Challenge 1: Expensive Data Transfer Costs

10

• Alleviate the overheads of passing the output data of the one step as input data

to the next step

A Near-Bank PIM System

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Host Processor

(e.g., CPU/GPU)

Host Cores

Shared Cache

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

Standard Memory Modules

Bus GNN

Aggregation

GNN

Combination

data

PyGim Overview

11

• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

Lightweight Tuning

Handy Programming Interface

Expensive Data Transfer Costs

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

PyGim Overview

11

• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Expensive Data Transfer Costs

2. Parallelism Fusion (PaF)

12

• PaF (i) strives a balance between computation and data transfer costs and

 (ii) covers various graphs with diverse characteristics

• PaF enables 3 levels of parallelism:

1. Across PIM Clusters: Edge- and Feature-level parallelism

2. Within PIM Cluster: Vertex- or Edge-level parallelism

3. Within PIM Core: Vertex- or Edge-level parallelism

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Across PIM Clusters

Within PIM Cluster

PIM Core

Threads

Within PIM Core
Reduces data transfer costs

Reduce computation costs

An Aggregation Example

13

• E.g., a graph with 8 vertices and 14 edges

• SPMM is used for aggregation

1

2

3

4 5

8 6

7

SPMM

Adjacency (Sparse) Matrix Input Feature Matrix Aggregation Results

1

2

3

4 5

8 6

7

2.1 PaF Parallelism Across PIM Clusters

14

• PaF (i) strives a balance between computation and data transfer costs and

 (ii) covers various graphs with diverse characteristics

• PaF enables 3 levels of parallelism:

1. Across PIM Clusters: Edge- and Feature-level parallelism

2. Within PIM Cluster: Vertex- or Edge-level parallelism

3. Within PIM Core: Vertex- or Edge-level parallelism

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Across PIM Clusters

PIM Core

Threads

Across PIM Clusters: Edge- & Feature-Level Parallelism
• E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions

Adjacency (Sparse) Matrix Input Feature Matrix

1

2

3

4 5

8 6

7

Edge-level partition

Clusters

1,2

Clusters

3,4

15

Clusters

1,2

Clusters

3,4

Across PIM Clusters: Edge- & Feature-Level Parallelism

15

• E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions

Adjacency (Sparse) Matrix Input Feature Matrix

1

2

3

4 5

8 6

7
Clusters 1,2

1

2

3

4 5

8 6

7
Clusters 3,4

Edge-level partition Feature-level partition

Clusters

1,2

Clusters

3,4

C
lu

st
e
r

1
C

lu
st

e
r

3

C
lu

st
e
r

4
C

lu
st

e
r

2

Clusters

1,2

Clusters

3,4

Across PIM Clusters: Edge- & Feature-Level Parallelism

15

• E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions

Adjacency (Sparse) Matrix Input Feature Matrix Partial Results for Output

C
lu

st
e
r

1

C
lu

st
e
r

3

C
lu

st
e
r

2

C
lu

st
e
r

4

1

2

3

4 5

8 6

7
Cluster 1

1

2

3

4 5

8 6

7
Cluster 2

1

2

3

4 5

8 6

7
Cluster 3

1

2

3

4 5

8 6

7
Cluster 4

Edge-level partition Feature-level partition

Clusters

1,2

Clusters

3,4

C
lu

st
e
r

1
C

lu
st

e
r

3

C
lu

st
e
r

4
C

lu
st

e
r

2

Merged by Host cores

2.2 PaF Parallelism Within PIM Cluster

16

• PaF (i) strives a balance between computation and data transfer costs and

 (ii) covers various graphs with diverse characteristics

• PaF enables 3 levels of parallelism:

1. Across PIM Clusters: Edge- and Feature-level parallelism

2. Within PIM Cluster: Vertex- or Edge-level parallelism

3. Within PIM Core: Vertex- or Edge-level parallelism

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Within PIM Cluster

PIM Core

Threads

Within a PIM Cluster: Vertex- or Edge-Level Parallelism

17

• E.g., balancing vertices or balancing edges across PIM cores within the cluster

Adjacency (Sparse) Matrix

Core 1

Balance Vertices Across PIM Cores Balance Edges Across PIM Cores

Adjacency (Sparse) Matrix

Core 2

Core 1

Core 2

PIM-Enabled Memory

DRAM Bank

PIM Core

DRAM Bank

PIM Core

DRAM Bank

PIM Core

DRAM Bank

PIM Core

Cluster 1 has 2 PIM Cores

Cluster 2

2.3 PaF Parallelism Within PIM Core

18

• PaF (i) strives a balance between computation and data transfer costs and

 (ii) covers various graphs with diverse characteristics

• PaF enables 3 levels of parallelism:

1. Across PIM Clusters: Edge- and Feature-level parallelism

2. Within PIM Cluster: Vertex- or Edge-level parallelism

3. Within PIM Core: Vertex- or Edge-level parallelism

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

PIM-Enabled Memory

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

DRAM
Bank

PIM

Core

Cluster 1 Cluster 2 Cluster 3 Cluster 4

PIM Core

Threads

Within PIM Core

Within a PIM Core: Vertex- or Edge-Level Parallelism

19

• E.g., balancing vertices or balancing edges across threads within a PIM core

Adjacency (Sparse) Matrix

Thread 1

Balance Vertices Across Threads Balance Edges Across Threads

Adjacency (Sparse) Matrix

PIM Core

Threads

PIM Core supports

4 threads

Thread 2

Thread 3

Thread 4

Thread 1
Thread 2

Thread 3

Thread 4

Synchronization is implement

with lock-free or fine-grained locking schemes

20

• PaF supports a wide variety of parallelization strategies:
→ Typically there is no one-size-fits-all solution

• Challenge = manually tuning the parallelization strategy poses significant

burdens for developers
• Unique graph's characteristics need different tuning

Challenge 2: Programmability in Real-World Graphs

Real-world graphs exhibit diverse characteristics

regular graph power-law graph diagonal graph

PyGim Overview

21

• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Expensive Data Transfer Costs

Programmability in

Real-World Graphs

PyGim Overview

21

• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Expensive Data Transfer Costs

Programmability in

Real-World Graphs

22

• PyGim Tuner predicts the best-performing PaF strategy without manual

programmer intervention
• Hardware profiler generate a group of performance measurements

• Performance predictor predict the execution of potential PaF strategy

• PaF selector apply the best-performing PaF strategy

3. Lightweight Tuning

PIM-Enabled Memory

DRAM Bank

PIM Core

DRAM Bank

PIM Core

Real PIM System

Real-world Graph

Best-performing

PaF Strategy

Tunes

PyGim Tuner

PaF Selector

Performance Predictor

Host->PIM

PIM->Host

PIM Kernel

Host Kernel

Hardware
Profiler

PaF Generator

PyGim Overview

21

• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

23

• PyGim integrates a handy Python API (currently integrated with PyTorch)

4. Handy Programming Interface

import torch, pygim as gyn
 class GCNConv(torch.nn.Module):
 def __init__(self, hidden_size):
 self.linear = torch.nn.Linear(feature_size, features_size)

 def forward(self, graph_pim, in_dense):
 # Execute memory-intensive operator in PIM devices
 dense_parts = col_split(in_dense)
 out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)
 # Execute compute-intensive operator in Host (e.g., CPU/GPU)
 out = self.linear(out_dense)
 return out

 gyn.pim_init_devices(num_pim_devices) # Initialize PIM devices
 data = load_dataset() # Load graph
 # Tune the PaF strategy
 graph_parts, config = gyn.tune(data.graph, feature_size, device_info)
 graph_pim = gyn.load_graph_pim(graph_parts) # Partition graph to PIM
 # Create GNN model
 model = torch.nn.Sequential([Linear(in_channels, feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 Linear(feature_size, out_channels)])
 model.forward(graph_pim, data.features) # GCN inference

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 Linear(feature_size, out_channels)])

import … pygim as gyn

out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)

Execute memory-intensive kernel in real PIM devices

graph_pim= gyn.tune(data.graph, feature_size, device_info)
Tune the PaF strategy

23

Deploy Your GNNs Effortlessly with PyGim and Enjoy the PIM Benefits!

import torch, pygim as gyn
 class GCNConv(torch.nn.Module):
 def __init__(self, hidden_size):
 self.linear = torch.nn.Linear(feature_size, features_size)

 def forward(self, graph_pim, in_dense):
 # Execute memory-intensive operator in PIM devices
 dense_parts = col_split(in_dense)
 out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)
 # Execute compute-intensive operator in Host (e.g., CPU/GPU)
 out = self.linear(out_dense)
 return out

 gyn.pim_init_devices(num_pim_devices) # Initialize PIM devices
 data = load_dataset() # Load graph
 # Tune the PaF strategy
 graph_parts, config = gyn.tune(data.graph, feature_size, device_info)
 graph_pim = gyn.load_graph_pim(graph_parts) # Partition graph to PIM
 # Create GNN model
 model = torch.nn.Sequential([Linear(in_channels, feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 Linear(feature_size, out_channels)])
 model.forward(graph_pim, data.features) # GCN inference

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 GCNConv(feature_size),
 Linear(feature_size, out_channels)])

import … pygim as gyn

out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)

Execute memory-intensive kernel in real PIM devices

graph_pim= gyn.tune(data.graph, feature_size, device_info)
Tune the PaF strategy

UPMEM PIM

fast-forwarded

Memory
small cores

Computation is performed

inside real PIM devices!

Talk Outline

24

Background & Motivation

PyGim Design

Evaluation

Evaluation Methodology

25

• UPMEM PIM server: 16 PIM DIMMs with 1992 PIM Cores (24 threads per core) in total

• GNN models: GCN, GIN, SAGE

• Datasets: OGBN-Proteins, Reddit, AmazonProducts

• Comparison points:

• PyTorch running on host CPU

• SparseP [Sigmetrics’22] (2×) running SpMM as multiple SpMV kernels on PIM cores

• GraNDe [IEEE Trans. Comput.’23]: optimizes GNN aggregation on near-rank PIM systems

UPMEM PIM System

PIM-Enabled MemoryPIM-Enabled Memory124 GB PIM-Enabled Memory

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

DRAM
Bank

PIM Core

Host CPU

(2-socket Intel Xeon)

Host Cores

Shared Cache

Bus

PIM-Enabled MemoryPIM-Enabled Memory
128 GB Main MemoryBus

26

Performance Evaluation in GNN Inference

0

0.5

1

1.5

2

2.5

3

3.5

4

GIN GCN SAGE GIN GCN SAGE GIN GCN SAGE

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p

INT32

PyTorch (CPU) SparseP1 SparseP2 GraNDe PyGim_CSR PyGim_COO

ogbn-proteins reddit amazonProducts

26

Performance Evaluation in GNN Inference

0

0.5

1

1.5

2

2.5

3

3.5

4

GIN GCN SAGE GIN GCN SAGE GIN GCN SAGE

N
o
rm

a
li
ze

d
 S

p
e
e
d
u
p

INT32

PyTorch (CPU) SparseP1 SparseP2 GraNDe PyGim_CSR PyGim_COO

ogbn-proteins reddit amazonProducts

PyGim significantly outperforms PyTorch (CPU)

and prior PIM-based schemes by 3.1× and 4.4× respectively

27

Energy Efficiency Evaluation in GNN Inference

0

2000

4000

6000

8000

10000

12000

14000

GIN GCN SAGE GIN GCN SAGE GIN GCN SAGE

E
n
e
rg

y
C
o
n
su

m
p
ti

o
n
 (

J
)

INT32

PyTorch (CPU) SparseP1 SparseP2 GraNDe PyGim_CSR PyGim_COO

ogbn-proteins reddit amazonProducts

PyGim improves energy efficiency by 2.7× and 3.3× compared to

PyTorch (CPU) and prior PIM-based schemes respectively

31

Characteristics of CPU, PIM and GPU Systems

System INT32 Peak

Performance

FP32 Peak

Performance

Total

Bandwidth

Technology Node

CPU Xeon 4215 0.64 TOPS 1.28 TFLOPS 23.1 GB/s 14nm

UPMEM PIM 0.12 TOPS 0.025 TFLOPS 1390 GB/s at least 20nm

GPU GTX 1080 Ti 13.25 TOPS 13.25 TFLOPS 359.9 GB/s 16nm

GPU RTX 2080 Ti 16.94 TOPS 16.94 TFLOPS 558.1 GB/s 12nm

GPU RTX 3090 17.79 TOPS 35.58 TFLOPS 936.2 GB/s 8nm

Across last GPU generations:

• memory bandwidth has tripled (~3×)

• (last two generations) compute throughput has been doubled (~2×)

28

Core Utilization in GNN Aggregation

Dataset & data type/

Software library

Reddit

INT32

Reddit

FP32

Intel MKL (CPU Intel Xeon 4215) 0.63% 0.22%

CUDA (GPU GTX 1080 Ti) 0.62% 0.62%

CUDA (GPU RTX 2080 Ti) 0.68% 0.67%

CUDA (GPU RTX 3090) 1.56% 0.78%

PyGim (UPMEM PIM) 13.86% 9.13%

Core utilization in GNN aggregation remains similarly low across GPU generations

PyGim running on a real PIM system achieves

significantly higher core utilization(11.6x on average) than the PyTorch on GPUs

41

More in the Paper

• Analysis within a PIM core

• Analysis within a PIM cluster

• Analysis across PIM clusters

• PyGim tuning efficiency

• Scalability analysis

• Analysis on different data types

• Analysis on different compression formats

• Performance evaluation in GNN training

• Recommendations

https://arxiv.org/pdf/2402.16731

https://arxiv.org/pdf/2402.16731

30

Conclusion

We present PyGim, a handy ML library that significantly improves performance,

energy efficiency and cost effectiveness in GNNs through real PIM devices

Key Ideas & Benefits:

• balances computation and data transfer costs via configurable parallelization

strategies for diverse real-world graphs

• automatically tunes the best-fit strategy without programmer intervention

Key Results:

• performance and energy efficiency by 3.7× and 2.3× over SOTA schemes

• core utilization on PIM system by 11.6× over PyTorch on GPUs

PyGim

PyGim: An Efficient Graph Neural Network Library
for Real Processing-In-Memory Architectures

Christina Giannoula, Peiming Yang, Ivan Fernandez, Jiacheng Yang,

Sankeerth Durvasula, Yu Xin Li, Mohammad Sadrosadati, Juan Gomez Luna,

Onur Mutlu, Gennady Pekhimenko

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

