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Key Results: PyGim improves (i) performance and energy efficiency by 3.7× and 2.3× over state-

of-the-art schemes, and (ii) core utilization on PIM system by 11.6× over PyTorch on GPUs

Executive Summary
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Problem: The memory-intensive kernels of Graph Neural Networks (GNNs) dominate execution 

time (~91%) and are significantly bottlenecked by memory bandwidth in procesor-centric systems 

(CPUs/GPUs)

PyGim: An efficient and easy-to-use GNN library for real Processing-In-Memory (PIM) systems

Key Ideas & Benefits: 

• Cost Effectiveness: Heteregenous GNN kernels are executed in the best-fit hardware 

• High Performance: (i) Enabling three levels of parallelism with various strategies in the PIM 

side and (ii) adapting best-performing parallelization strategy to the graph’s unique 

characteristics

• High Programming Ease: (i) Providing a handy Python API and (ii) automatically tuning the best-

fit parallelization strategy without programmer intervention

github.com/CMU-SAFARI/PyGim

Motivation: PIM provide significantly high memory bandwidth by enabling computation to be 

performed close to the application data

https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
https://github.com/CMU-SAFARI/PyGim
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GNNs Are Widely Used in Real-World Applications
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• GNNs are state-of-the-art ML models for analyzing graph-structure data

• GNN has a lot of applications:

Drug Discovery

Recommendation Systems

Fraud Detection



Execution Steps of GNN Layers
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• GNNs comprise a few layers (e.g., 3-5 layers)

• Each GNN layer has two execution steps:
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Execution Steps of GNN Layers
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• GNNs comprise a few layers (e.g., 3-5 layers)

• Each GNN layer has two execution steps:

Aggregation Combination

Aggregate neighbor’s feature, corresponds to 

Sparse Matrix Matrix Multiplication (SpMM)

Combine features by NN. Typically comprises 

compute-intensive kernels (e.g., GEMMs)
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GNN Aggregation Is Memory-Bandwidth-Bound In GPUs
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Using a RTX 3090 GPU with ~900 GB/s bandwidth, we find that GNN Aggregation

• takes ~91% of the inference time

• achieves less than 2% core utilization

Roofline Analysis

Bandwidth-Bound



PIM Alleviates The Data Movement Bottleneck 
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• Near-bank PIM: each PIM core is tightly coupled with one (or a few) DRAM banks 

• Near-bank PIM cores have significantly higher memory bandwidth than Host cores

A Near-Bank PIM System
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PyGim Overview
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• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Run heterogeneous kernels in the best-fit hardware

Strives a balance between computation and data transfer

Automatically tunes the best-performing PaF strategy

Integrates a handy Python (PyTorch) API

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Strives a balance between computation and data transfer

Automatically tunes the best-performing PaF strategy

Integrates a handy Python (PyTorch) API



1. Cooperative Acceleration (CoA)
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Heterogeneous kernels are running in the best-fit underlying hardware

• Combination runs on Host cores

• Aggregation runs on PIM cores

A Near-Bank PIM System
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Challenge 1: Expensive Data Transfer Costs
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• Alleviate the overheads of passing the output data of the one step as input data 

to the next step

A Near-Bank PIM System
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PyGim Overview
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• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

Lightweight Tuning

Handy Programming Interface

Expensive Data Transfer Costs

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)
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2. Parallelism Fusion (PaF)
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• PaF (i) strives a balance between computation and data transfer costs and 

 (ii) covers various graphs with diverse characteristics

• PaF enables 3 levels of parallelism:

1. Across PIM Clusters: Edge- and Feature-level parallelism

2. Within PIM Cluster: Vertex- or Edge-level parallelism

3. Within PIM Core: Vertex- or Edge-level parallelism
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An Aggregation Example
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• E.g., a graph with 8 vertices and 14 edges

• SPMM is used for aggregation
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2.1 PaF Parallelism Across PIM Clusters
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• PaF (i) strives a balance between computation and data transfer costs and 

 (ii) covers various graphs with diverse characteristics

• PaF enables 3 levels of parallelism:

1. Across PIM Clusters: Edge- and Feature-level parallelism

2. Within PIM Cluster: Vertex- or Edge-level parallelism

3. Within PIM Core: Vertex- or Edge-level parallelism
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Across PIM Clusters: Edge- & Feature-Level Parallelism
• E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions
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Across PIM Clusters: Edge- & Feature-Level Parallelism
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• E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions
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Across PIM Clusters: Edge- & Feature-Level Parallelism
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• E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions
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2.2 PaF Parallelism Within PIM Cluster
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• PaF (i) strives a balance between computation and data transfer costs and 

 (ii) covers various graphs with diverse characteristics

• PaF enables 3 levels of parallelism:

1. Across PIM Clusters: Edge- and Feature-level parallelism

2. Within PIM Cluster: Vertex- or Edge-level parallelism

3. Within PIM Core: Vertex- or Edge-level parallelism
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Within a PIM Cluster: Vertex- or Edge-Level Parallelism
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• E.g., balancing vertices or balancing edges across PIM cores within the cluster
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2.3 PaF Parallelism Within PIM Core
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• PaF (i) strives a balance between computation and data transfer costs and 

 (ii) covers various graphs with diverse characteristics

• PaF enables 3 levels of parallelism:

1. Across PIM Clusters: Edge- and Feature-level parallelism

2. Within PIM Cluster: Vertex- or Edge-level parallelism

3. Within PIM Core: Vertex- or Edge-level parallelism
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Within a PIM Core: Vertex- or Edge-Level Parallelism
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• E.g., balancing vertices or balancing edges across threads within a PIM core
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• PaF supports a wide variety of parallelization strategies: 
→ Typically there is no one-size-fits-all solution

• Challenge = manually tuning the parallelization strategy poses significant 

burdens for developers 
• Unique graph's characteristics need different tuning

Challenge 2: Programmability in Real-World Graphs

Real-world graphs exhibit diverse characteristics

regular graph power-law graph diagonal graph



PyGim Overview
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• An efficient and easy-to-use GNN library for real PIM systems

• PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Expensive Data Transfer Costs

Programmability in 

Real-World Graphs
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• PyGim Tuner predicts the best-performing PaF strategy without manual 

programmer intervention
• Hardware profiler generate a group of performance measurements

• Performance predictor predict the execution of potential PaF strategy

• PaF selector apply the best-performing PaF strategy

3. Lightweight Tuning
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PyGim Overview
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• An efficient and easy-to-use GNN library for real PIM systems
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• PyGim integrates a handy Python API (currently integrated with PyTorch)

4. Handy Programming Interface

import torch, pygim as gyn
   class GCNConv(torch.nn.Module):
   def __init__(self, hidden_size):
     self.linear = torch.nn.Linear(feature_size, features_size)
    
   def forward(self, graph_pim, in_dense):
     # Execute memory-intensive operator in PIM devices
     dense_parts = col_split(in_dense)
     out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)
     # Execute compute-intensive operator in Host (e.g., CPU/GPU)
     out = self.linear(out_dense)
     return out
  
   gyn.pim_init_devices(num_pim_devices) # Initialize PIM devices
   data = load_dataset() # Load graph
   # Tune the PaF strategy
   graph_parts, config = gyn.tune(data.graph, feature_size, device_info)  
   graph_pim = gyn.load_graph_pim(graph_parts) # Partition graph to PIM
   # Create GNN model
   model = torch.nn.Sequential([Linear(in_channels, feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    Linear(feature_size, out_channels)])  
   model.forward(graph_pim, data.features) # GCN inference
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# Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    Linear(feature_size, out_channels)])

import …   pygim as gyn

out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)

# Execute memory-intensive kernel in real PIM devices

graph_pim= gyn.tune(data.graph, feature_size, device_info)
# Tune the PaF strategy
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Deploy Your GNNs Effortlessly with PyGim and Enjoy the PIM Benefits!

import torch, pygim as gyn
   class GCNConv(torch.nn.Module):
   def __init__(self, hidden_size):
     self.linear = torch.nn.Linear(feature_size, features_size)
    
   def forward(self, graph_pim, in_dense):
     # Execute memory-intensive operator in PIM devices
     dense_parts = col_split(in_dense)
     out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)
     # Execute compute-intensive operator in Host (e.g., CPU/GPU)
     out = self.linear(out_dense)
     return out
  
   gyn.pim_init_devices(num_pim_devices) # Initialize PIM devices
   data = load_dataset() # Load graph
   # Tune the PaF strategy
   graph_parts, config = gyn.tune(data.graph, feature_size, device_info)  
   graph_pim = gyn.load_graph_pim(graph_parts) # Partition graph to PIM
   # Create GNN model
   model = torch.nn.Sequential([Linear(in_channels, feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    Linear(feature_size, out_channels)])  
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# Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    GCNConv(feature_size),
    Linear(feature_size, out_channels)])

import …   pygim as gyn

out_dense = gyn.pim_run_aggr(graph_pim, dense_parts)

# Execute memory-intensive kernel in real PIM devices

graph_pim= gyn.tune(data.graph, feature_size, device_info)
# Tune the PaF strategy

UPMEM PIM

fast-forwarded

Memory
small cores

Computation is performed 

inside real PIM devices!
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Evaluation Methodology
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• UPMEM PIM server: 16 PIM DIMMs with 1992 PIM Cores (24 threads per core) in total

• GNN models: GCN, GIN, SAGE

• Datasets: OGBN-Proteins, Reddit, AmazonProducts

• Comparison points:

• PyTorch running on host CPU

• SparseP [Sigmetrics’22] (2×) running SpMM as multiple SpMV kernels on PIM cores

• GraNDe [IEEE Trans. Comput.’23]: optimizes GNN aggregation on near-rank PIM systems

UPMEM PIM System
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Performance Evaluation in GNN Inference
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Performance Evaluation in GNN Inference
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PyGim significantly outperforms PyTorch (CPU) 

and prior PIM-based schemes by 3.1× and 4.4× respectively
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Energy Efficiency Evaluation in GNN Inference
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PyGim improves energy efficiency by 2.7× and 3.3× compared to 

PyTorch (CPU) and prior PIM-based schemes respectively
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Characteristics of CPU, PIM and GPU Systems

System INT32 Peak

Performance

FP32 Peak 

Performance

Total 

Bandwidth

Technology Node

CPU Xeon 4215 0.64 TOPS 1.28 TFLOPS 23.1 GB/s 14nm

UPMEM PIM 0.12 TOPS 0.025 TFLOPS 1390 GB/s at least 20nm

GPU GTX 1080 Ti 13.25 TOPS 13.25 TFLOPS 359.9 GB/s 16nm

GPU RTX 2080 Ti 16.94 TOPS 16.94 TFLOPS 558.1 GB/s 12nm

GPU RTX 3090 17.79 TOPS 35.58 TFLOPS 936.2 GB/s 8nm

Across last GPU generations:

•  memory bandwidth has tripled (~3×)

• (last two generations) compute throughput has been doubled (~2×)
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Core Utilization in GNN Aggregation

Dataset & data type/

Software library

Reddit

INT32

Reddit

FP32

Intel MKL (CPU Intel Xeon 4215) 0.63% 0.22%

CUDA (GPU GTX 1080 Ti) 0.62% 0.62%

CUDA (GPU RTX 2080 Ti) 0.68% 0.67%

CUDA (GPU RTX 3090) 1.56% 0.78%

PyGim (UPMEM PIM) 13.86% 9.13%

Core utilization in GNN aggregation remains similarly low across GPU generations

PyGim running on a real PIM system achieves 

significantly higher core utilization(11.6x on average) than the PyTorch on GPUs
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More in the Paper

• Analysis within a PIM core

• Analysis within a PIM cluster

• Analysis across PIM clusters

• PyGim tuning efficiency

• Scalability analysis

• Analysis on different data types 

• Analysis on different compression formats

• Performance evaluation in GNN training

• Recommendations

https://arxiv.org/pdf/2402.16731

https://arxiv.org/pdf/2402.16731
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Conclusion

We present PyGim, a handy ML library that significantly improves performance, 

energy efficiency and cost effectiveness in GNNs through real PIM devices

Key Ideas & Benefits:  

• balances computation and data transfer costs via configurable parallelization 

strategies for diverse real-world graphs

• automatically tunes the best-fit strategy without programmer intervention

Key Results: 

• performance and energy efficiency by 3.7× and 2.3× over SOTA schemes

• core utilization on PIM system by 11.6× over PyTorch on GPUs

PyGim
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