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Executive Summary

Problem: The memory-intensive kernels of Graph Neural Networks (GNNs) dominate execution

time (~91%) and are significantly bottlenecked by memory bandwidth in procesor-centric systems
(CPUs/GPUs)

Motivation: PIM provide significantly high memory bandwidth by enabling computation to be
performed close to the application data

PyGim: An efficient and easy-to-use GNN library for real Processing-In-Memory (PIM) systems

Key Ideas & Benefits:

« Cost Effectiveness: Heteregenous GNN kernels are executed in the best-fit hardware

« High Performance: (i) Enabling three levels of parallelism with various strategies in the PIM
side and (ii) adapting best-performing parallelization strategy to the graph’s unique
characteristics

« High Programming Ease: (i) Providing a handy Python API and (ii) automatically tuning the best-
fit parallelization strategy without programmer intervention

Key Results: PyGim improves (i) performance and energy efficiency by 3.7x and 2.3x over state-
of-the-art schemes, and (ii) core utilization on PIM system by 11.6x over PyTorch on GPUs

github.com/CMU-SAFARI/PyGim
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GNNs Are Widely Used in Real-World Applications

* GNNs are state-of-the-art ML models for analyzing graph-structure data
* GNN has a lot of applications:




Execution Steps of GNN Layers

* GNNs comprise a few layers (e.g., 3-5 layers)
« Each GNN layer has two execution steps:
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Execution Steps of GNN Layers

* GNNs comprise a few layers (e.g., 3-5 layers)
« Each GNN layer has two execution steps:
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Aggregation '

Combine features by NN. Typically comprises
compute-intensive kernels (e.g., GEMMs)

Aggregate neighbor’s feature, corresponds to
Sparse Matrix Matrix Multiplication (SpMM)




GNN Aggregation Is Memory-Bandwidth-Bound In GPUs

Using a RTX 3090 GPU with ~900 GB/s bandwidth, we find that GNN Aggregation
e takes ~91% of the inference time
e achieves less than 2% core utilization

Roofline Analysis
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PIM Alleviates The Data Movement Bottleneck

« Near-bank PIM: each PIM core is tightly coupled with one (or a few) DRAM banks
* Near-bank PIM cores have significantly higsher memory bandwidth than Host cores

A Near-Bank PIM System
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PyGim Overview

* An efficient and easy-to-use GNN library for real PIM systems

* PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface

Run heterogeneous kernels in the best-fit hardware



1. Cooperative Acceleration (CoA)

Heterogeneous kernels are running in the best-fit underlying hardware
« Combination runs on Host cores
» Aggregation runs on PIM cores

A Near-Bank PIM System
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Challenge 1: Expensive Data Transfer Costs

* Alleviate the overheads of passing the output data of the one step as input data
to the next step
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2. Parallelism Fusion (PaF)

« PaF (i) strives a balance between computation and data transfer costs and
(i1) covers various graphs with diverse characteristics

* PaF enables 3 levels of parallelism: | Reduces data transfer costs |

1. Across PIM Clusters: Edge- and Feature-level
2. Within PIM Cluster: Vertex- or Edge-level parallelism
3. Within PIM Core: Vertex- or Edge-level parallelism
Reduce computation costs

arallelism
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An Aggregation Example

« E.g., a graph with 8 vertices and 14 edges
« SPMM is used for aggregation

Adjacency (Sparse) Matrix Input Feature Matrix Aggregation Results
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2.1 PaF Parallelism Across PIM Clusters

« PaF (i) strives a balance between computation and data transfer costs and
(i1) covers various graphs with diverse characteristics

» PaF enables 3 levels of parallelism:

[ 1.

Across PIM Clusters: Edge- and Feature-level parallelism]
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Across PIM Clusters: Edge- & Feature-Level Parallelism
« E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions

Edge-level partition
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Across PIM Clusters: Edge- & Feature-Level Parallelism
« E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions
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Across PIM Clusters: Edge- & Feature-Level Parallelism
« E.g., creating 4 PIM clusters with 2 Edge partitions and 2 Feature partitions

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Edge-level partition Feature-level partition Merged by Host cores
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2.2 PaF Parallelism Within PIM Cluster

« PaF (i) strives a balance between computation and data transfer costs and
(i1) covers various graphs with diverse characteristics

« PaF enables 3 levels of parallelism:
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Within a PIM Cluster: Vertex- or Edge-Level Parallelism

« E.g., balancing vertices or balancing edges across PIM cores within the cluster
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2.3 PaF Parallelism Within PIM Core

« PaF (i) strives a balance between computation and data transfer costs and
(i1) covers various graphs with diverse characteristics

« PaF enables 3 levels of parallelism:

Within PIM Core

PIM Core
[ 3. _Within PIM Core: Vertex- or Edge-level parallelism ] 55555
Threads
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Within a PIM Core: Vertex- or Edge-Level Parallelism

« E.g., balancing vertices or balancing edges across threads within a PIM core

Balance Vertices Across Threads Balance Edges Across Threads
Thread 1 - - -
_Tire_acl 1_ L ] i _|_ _Thread 2
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PIM Core supports P ore Synchronization is implement
4 threads ??Ssds with lock-free or fine-grained locking schemes
Threads
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Challenge 2: Programmability in Real-World Graphs

» PaF supports a wide variety of parallelization strategies:
- Typically there is no one-size-fits-all solution

 Challenge = manually tuning the parallelization strategy poses significant

burdens for developers
« Unique graph’s characteristics need different tuning

regular graph power-law graph diagonal graph

Real-world graphs exhibit diverse characteristics
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PyGim Overview

* An efficient and easy-to-use GNN library for real PIM systems

* PyGim incorporates 4 key components:

Cooperative Acceleration (CoA)

Parallelism Fusion (PaF)

Lightweight Tuning

Handy Programming Interface
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3. Lightweight Tuning

« PyGim Tuner predicts the best-performing PaF strategy without manual
programmer intervention

« Hardware profiler generate a group of performance measurements

» Performance predictor predict the execution of potential PaF strategy
» PaF selector apply the best-performing PaF strategy

PIM-Enabled Memory
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4. Handy Programming Interface

OWoONOUVID WDN R

PyGim integrates a handy Python API (currently integrated with PyTorch)

import .. pygim as gyn
GCNConv (torch.nn.Module):
( , hidden size):
.linear = torch.nn.Linear(feature_size, features size)

( , graph pim, in_dense):
# Execute memory-intensive kernel in real PIM devices
dense parts = col split(in dense)

out dense = gyn.pim run aggr(graph pim, dense parts)

out = .linear(out_dense)
out

gyn.pim_init devices(num_pim_devices)
data = load dataset()
# Tune the PaF strategy

raph n.tune(data.graph, feature size, device info
graph pim = gyn.load graph pim(graph parts

# Create GNN model
model=torch.nn.Sequential([Linear(in_channels,feature size),

GCNConv(feature_size),
GCNConv(feature_size),
GCNConv(feature_size),

Linear(feature_size, out_channels)])
model.forward(graph pim, data.features)
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Deploy Your GNNs Effortlessly with PyGim and Enjoy the PIM Benefits!
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1|import - ___pygim as gyn I

# Execute memory-intensive kernel in real PIM devices

out dense = gyn.pim run aggr(graph pim, dense parts)

Computation is performed

inside real PIM devices!

# Tune the PaF strategy

leraph pim= gyn.tune(data.graph, feature size, devi. 2fo)

~

# Create GNN model

GCNConv(feature_size),
GCNConv(feature_size),
GCNConv(feature_size),
Linear(feature size, out channels)])

N

model=torch.nn.Sequential([Linear(in_channels,feature size),

Loading kernel from: /home/upmem@@l3/
m_mul_coo_dpu

1880 DPUs are allocated in 16 ranks
Allocated 16 TASKLET(s) per DPU

BLNC BLNC_NNZ

SYNC True

BLNC_TSKLT = BLNC_TSKLT_NNZ
LOCK = LOCKFREEVY2

MERGE = BLOCK
PIM_SEQREAD_CACHE_SIZE=32
val_dt = INT32

spmm_coo_to_device_group

prepare_pim finished

Iteration - ime: 7127.993@
Iteration . ime: 7191. §
Iteration |

Iteration @883:

Iteration 00G4:

Iteration @805:

2—7 y
T 2 e 1
wod e [o 4

small cores

Memory UPMEM PIM
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Evaluation Methodology

« UPMEM PIM server: 16 PIM DIMMs with 7992 PIM Cores (24 threads per core) in total
 GNN models: GCN, GIN, SAGE
« Datasets: OGBN-Proteins, Reddit, AmazonProducts
« Comparison points:
* PyTorch running on host CPU

 SparseP [Sigmetrics’22] (2x) running SpMM as multiple SpMV kernels on PIM cores
« GraNDe [IEEE Trans. Comput.’23]: optimizes GNN aggregation on near-rank PIM systems

([~ N

Host CPU Bus 128 GB Main Memory
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~1 124 GB PIM-Enabled Memory )
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Performance Evaluation in GNN Inference
INT32
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Performance Evaluation in GNN Inference
INT32

OPyTorch (CPU) O SparseP1 @ SparseP2 B GraNDe B PyGim_CSR m PyGim_CQOO
4

N W
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—

ormalized Speedup
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PyGim significantly outperforms PyTorch (CPU)

and prior PIM-based schemes by 3.1x and 4.4x respectively
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Energy Efficiency Evaluation in GNN Inference
INT 32
OPyTorch (CPU) O SparseP1 @ SparseP2 ® GraNDe B PyGim_CSR  mPyGim_COO
14000 |

12000 |
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8000 |
6000 !
|
1

4000 || ] ]

gy Consumption (J)

PyGim improves energy efficiency by 2.7x and 3.3x compared to

PyTorch (CPU) and prior PIM-based schemes respectively
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Characteristics of CPU, PIM and GPU Systems

System INT32 Peak FP32 Peak Total Technology Node
Performance Performance Bandwidth

CPU Xeon 4215 0.64 TOPS 1.28 TFLOPS 23.1 GB/s 14nm
UPMEM PIM 0.12 TOPS 0.025 TFLOPS 1390 GB/s at least 20nm
GPU GTX 1080 Ti 13.25 TOPS 13.25 TFLOPS 359.9 GB/s 16nm
GPU RTX 2080 Ti 16.94 TOPS 16.94 TFLOPS 558.1 GB/s 12nm
GPU RTX 3090 17.79 TOPS 35.58 TFLOPS 1936.2 GB/s, 8nm

Across last GPU generations:
 memory bandwidth has tripled (~3x)
« (last two generations) compute throughput has been doubled (-2x)



Core Utilization in GNN Aggregation

Dataset & data type/ Reddit Reddit
Software library INT32 FP32

Intel MKL (CPU Intel Xeon 4215) 0.63% 0.22%
CUDA (GPU GTX 1080 Ti) 0.62% 0.62%
CUDA (GPU RTX 2080 Ti) 0.68% 0.67%
CUDA (GPU RTX 3090) 1.56% 0.78%
PyGim (UPMEM PIM) 13.86% 9.13%

Core utilization in GNN aggregation remains similarly low across GPU generations

PyGim running on a real PIM system achieves
significantly higher core utilization(11.6x on average) than the PyTorch on GPUs
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More in the Paper

PyGim: An Efficient Graph Neural Network Library for Real

AnalySiS Within a PIM core Processing-In-Memory Architectures
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PyG-i m t u n -i n g e ff-i C-i e n Cy GENNADY PEKHIMENKO, University of Toronto, Canada, Vector Institute, Canada, and CentML,
Canada

Graph Neural Networks (GNNs) are emerging models to analyze graph-structure data. The GNN execution
involves both compute-intensive and memory-intensive kernels. The memory-intensive kernels dominate
ol o N execution time, because they are significantly bottlenecked by data movement between memory and processors.

Processing-In-Memory (PIM) systems can alleviate this data movement bottleneck by placing simple processors
SC a l a b.l l ] ty a n a lyS] S near or inside memory arrays. To this end, we investigate the potential of PIM systems to alleviate the data

movement bottleneck in GNNs, and introduce PyGim, an efficient and easy-to-use GNN library for real PIM

systems. We propose intelligent parallelization techniques for memory-intensive kernels of GNNs tailored
for real PIM systems, and develop an easy-to-use Python API for them. PyGim employs a cooperative GNN
hd by execution, in which the compute- and memory-intensive kernels are executed in processor-centric and

A n a lyS] S O n d ] ffe re n t d at a ty p eS memory-centric computing systems, respectively, to fully exploit the hardware capabilities. PyGim integrates
a lightweight tuner that configures the parallelization strategy of the memory-intensive kernel of GNNs to

provide high system performance, while also enabling high programming ease. We extensively evaluate PyGim
on a real-world PIM system that has 16 PIM DIMMs with 1992 PIM cores connected to a Host CPU. In GNN
. . . inference, we demonstrate that it outperforms prior state-of-the-art PIM works by on average 4.38x (up to
A n a l S'I S O n d 'I ffe re n t C O m reS S'I O n fo rm at S 7.20%), and the state-of-the-art PyTorch implementation running on Host (on Intel Xeon CPU) by on average
y p 3.04X (up to 3.44x). PyGim improves energy efficiency by 2.86x (up to 3.68x) and 1.55X (up to 1.75x) over prior

PIM and PyTorch Host schemes, respectively. In memory-intensive kernel of GNNs, PyGim provides 11.6x

higher resource utilization in PIM system than that of PyTorch library (optimized CUDA implementation)

in GPU systems. Our work provides useful recommendations for software, system and hardware designers.
PyGim is publicly and freely available at https://github.com/CMU-SAFARI/PyGim to facilitate the widespread

Performance evaluation in GNN training

Key Words: machine learning, graph neural networks, sparse matrix-matrix multiplication, library, mul-
ticore, processing-in-memory, near-data processing, memory systems, data movement bottleneck, DRAM,
benchmarking, real-system characterization, workload characterization

Recommendations

https://arxiv.org/pdf/2402.16731



https://arxiv.org/pdf/2402.16731

Conclusion

We present PyGim, a handy ML library that significantly improves performance,
energy efficiency and cost effectiveness in GNNs through real PIM devices

Key ldeas & Benefits:

» balances computation and data transfer costs via configurable parallelization
strategies for diverse real-world graphs

« automatically tunes the best-fit strategy without programmer intervention

Key Results:

« performance and energy efficiency by 3.7x and 2.3x over SOTA schemes
* core utilization on PIM system by 11.6x over PyTorch on GPUs

Github
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