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Our Work
Efficient Algorithmic Designs
• The first open-source Sparse Matrix Vector Multiplication 

(SpMV) software package, SparseP, for real Processing-In-
Memory (PIM) systems

Extensive Characterization
• The first comprehensive analysis of SpMV on the first real 

commercial PIM architecture

Full Paper: https://arxiv.org/pdf/2201.05072.pdf

Recommendations for Architects and Programmers

SparseP: https://github.com/CMU-SAFARI/SparseP

SparseP is Open-Source

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP
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Sparse Matrix Vector Multiplication
Sparse Matrix Vector Multiplication (SpMV):
§ Widely-used kernel in graph processing,   

machine learning, scientific computing … 

§ A highly memory-bound kernel
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Real Processing-In-Memory Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth
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Real Processing-In-Memory Systems
Real Near-Bank Processing-In-Memory (PIM) Systems:
• High levels of parallelism
• Low memory access latency
• Large aggregate memory bandwidth

Host 
CPU

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled Memory

DRAM 
Bank

PIM Core

DRAM 
Bank

PIM Core

DRAM 
Bank

PIM Core

DRAM 
Bank

PIM Core

Bus

PIM-Enabled MemoryPIM-Enabled MemoryPIM-Enabled MemoryMain Memory
DRAM 
Bank

DRAM 
Bank

DRAM 
Bank

DRAM 
BankBusKwon+, [ISSCC 2021] Lee+, [ISSCC 2022]

https://www.upmem.com
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SparseP: SpMV Library for Real PIMs
Our Contributions:
1. Design efficient SpMV kernels for current and future PIM 

systems
§ 25 SpMV kernels

§ 4 compressed matrix formats (CSR, COO, BCSR, BCOO)
§ 6 data types
§ 4 data partitioning techniques
§ Various load balancing schemes among PIM cores/threads
§ 3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first 
commercially-available real PIM system 
§ 26 sparse matrices
§ Comparisons to state-of-the-art CPU and GPU systems
§ Recommendations for software, system and hardware 

designers
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Outline

Key Takeaways from Our Study

Conclusion
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SpMV Execution on a PIM System
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Data Partitioning Techniques

1D Partitioning
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SparseP supports two types of data partitioning techniques:
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1D Partitioning Technique
Load-Balancing Approaches:
• CSR, COO:
• Balance Rows
• Balance NNZs *

• BCSR, BCOO:
• Balance Blocks ^
• Balance NNZs ^

* row-granularity for CSR
^ block-row-granularity for BCSR
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1D Partitioning Technique
Load-Balancing of #NNZs:
• CSR (row-granularity), COO
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1D Partitioning Technique
Load-Balancing of #NNZs:
• CSR (row-granularity), COO
• BCSR (block-row-granularity), BCOO
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2D Partitioning Technique
Equally-Sized Tiles
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Parallelization across Threads
Multithreaded PIM Cores:

DRAM 
Bank

Multithreaded 
PIM Core

Core 1

Core 2

Core 4
Core 3

Core 1 Core 2

Core 4Core 3

1D Partitioning 2D Partitioning

Thread 2
Thread 1

Thread 2

Thread 1

• Various load-balance schemes across threads
• Various synchronization approaches among threads

Balance NNZs
Balance NNZs



15

SparseP Software Package
25 SpMV kernels for PIM Systems à

https://github.com/CMU-SAFARI/SparseP

Load-balance 
across PIM cores/threads:
* row-granularity (CSR)
^ block-row-granularity (BCSR)

Synchronization 
among threads of a PIM core:
▵ lb-cg, lb-fb, lf (COO, BCOO)

Data Types:
• 8-bit integer
• 16-bit integer
• 32-bit integer
• 64-bit integer
• 32-bit float
• 64-bit float

Partitioning Matrix Format Load-Balancing
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https://github.com/CMU-SAFARI/SparseP


16

Outline

SpMV Kernels for Real PIM Systems

Conclusion
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UPMEM-based PIM System
• 20 UPMEM PIM DIMMs with 2560 PIM cores in total
• Each multithreaded PIM core supports 24 threads
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Sparse Matrix Data Set
26 sparse matrices*:
• Diverse sparsity patterns
• Variability on irregular patterns
• Variability on block patterns

Regular Matrix Scale-Free Matrix

* Suite Sparse Matrix Collection: https://sparse.tamu.edu/

https://sparse.tamu.edu/
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Kernel Execution on PIM Cores
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Comparison of Compressed Formats
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Comparison of Compressed Formats
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Comparison of Compressed Formats
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Comparison of Compressed Formats
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The compressed matrix format used to store the input matrix 
determines the data partitioning across DRAM banks of PIM-enabled 
memory. As a result, it affects the load-balance across PIM cores (and 
threads of a PIM core) with corresponding performance implications. 

Key Takeaway 1

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high 
computation balance across PIM cores (and threads of a PIM core).

Recommendation 1
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End-to-End Performance

bus bus

PIM-Enabled Memory

DRAM 
Bank

PIM 
Core

DRAM 
Bank

PIM 
Core

DRAM 
Bank

PIM 
Core

Host CPU

+

Load the 
input vector

Execute the 
kernel

Retrieve the
partial results

Merge the
partial results

1 2 3 4

Main Memory

DRAM 
Bank

DRAM 
Bank



COO format, 32-bit integer
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Scalability

1D: #bytes to load the input vector grows linearly to #PIM cores

The scalability is limited 
by the load time



COO format, 32-bit integer
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Scalability

The 1D-partitioned kernels are severely bottlenecked by the high 
data transfer costs to broadcast the whole input vector into DRAM 
banks of all PIM cores, through the narrow off-chip memory bus.

Key Takeaway 2

Optimize the broadcast collective collective in data transfers to 
PIM-enabled memory to efficiently copy the input data into DRAM 
banks in the PIM system.

Recommendation 2



COO format, 32-bit integer
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Scalability

2D Equally-Sized: kernel time is limited by only
a few PIM cores assigned to the 2D tiles with the largest #NNZs

The scalability is limited 
by the kernel time



COO format, 32-bit integer
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Scalability

2D Equally-Wide + 2D Variable-Sized: 
high amount of zero padding to gather the output vector à

parallel transfers supported at rank granularity = 64 PIM cores

> 88% of data is zeros

The scalability is limited 
by the retrieve time



COO format, 32-bit integer
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Scalability

88.6% 88.0%

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve 
the output results to the host CPU.

Recommendation 3

The 2D equally-wide and variable-sized kernels need fine-grained 
parallel data transfers at DRAM bank granularity (zero padding) to 
be supported by the PIM system to achieve high performance.

Key Takeaway 3
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1D vs 2D
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1D vs 2D
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Expensive data transfers to/from PIM-enabled memory performed 
via the narrow memory bus impose significant performance 
overhead to end-to-end SpMV execution. Thus, it is hard to fully 
exploit all available PIM cores of the system.

Key Takeaway 4

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in 
the PIM system, and/or integrate PIM-enabled memory as the main 
memory of the system.

Recommendation 4
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SpMV Execution on Various Systems
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CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W  

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric



34

CPU/GPU Comparisons

System Peak Performance Bandwidth TDP

CPU Intel Xeon
Silver 4110

660 GFlops 23.1 GB/s 2x85 W  

GPU NVIDIA
Tesla V100

14.13 TFlops 897 GB/s 300 W

PIM UPMEM
1st Gen.

4.66 GFlops 1.77 TB/s 379 W

Processor-
Centric

Memory-
Centric

• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.      
• GPU = 0.21% of Peak Perf.     
• PIM (1D) = 50.7% of Peak Perf.
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CPU/GPU Comparisons

System Peak Performance Bandwidth TDP
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• CPU =  4.08 GFlop/s
• GPU =  1.92 GFlop/s       
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CPU/GPU Comparisons
• Kernel-Only (COO, 32-bit float):
• CPU = 0.51% of Peak Perf.      
• GPU = 0.21% of Peak Perf.     
• PIM (1D) = 50.7% of Peak Perf.

• End-to-End (COO, 32-bit float):
• CPU =  4.08 GFlop/s
• GPU =  1.92 GFlop/s       
• PIM (1D) =  0.11 GFlop/s

Many more results in the full paper: 
https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf
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Outline

SpMV Kernels for Real PIM Systems

Key Takeaways from Our Study
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Conclusion
• SpMV is a fundamental linear algebra kernel for important 

applications (HPC, machine learning, graph analytics… )

• SpMV is a highly memory-bound kernel in processor-centric 
systems (e.g., CPU and GPU systems)

• Real near-bank PIM systems can tackle the data movement 
bottleneck (high parallelism, large aggregate memory bandwidth)

• Key Contributions:
• SparseP : first open-source SpMV library for real PIM systems
• Comprehensive characterization and analysis of SPMV on the first 

real PIM system
• Recommendations to improve multiple aspects of future PIM 

hardware and software

SparseP: https://github.com/CMU-SAFARI/SparseP
Full Paper: https://arxiv.org/pdf/2201.05072.pdf

Our Work

https://github.com/CMU-SAFARI/SparseP
https://arxiv.org/pdf/2201.05072.pdf
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